In an advanced information-oriented society, we require information processing with flexible, human-like information capabilities.

Information processing in human and animal organic systems has developed by means of structural and functional adaptation to the environment through a long process of evolution; there is no other high-level processing capacity quite like it.

Intelligence Science and Technology is a multidisciplinary field that aims to clarify the mechanisms of biological—particularly, human—information processing for the development of higher-level information processing.
Welcome to the World of Intelligence Science and Technology

YAMAMOTO Akihiro, Department of Intelligence Science and Technology

Intelligence science and technology is a research field concerned with information processing performed by living organisms, particularly humans. The keyword, "intelligence," tends to be misconceived as referring to "artificial intelligence," but we consider intelligence science and technology from a far wider perspective. Education and research at the department cover multiple disciplines ranging from the study of media—such as images, sounds and languages, life, and cognition as the origins for intelligent information processing mechanisms, to more abstract information processing mechanisms, such as software and computer networks. The department is characterized by its pursuits for the essence of intelligence in these fields. Although the research fields cover a wide area, the faculty members and students in the department have a strong sense of unity, sharing the same goal of unraveling "intelligence." They are moving towards this goal by mutually imparting and receiving "knowledge" generated from their research through discussions. Both of the entrance examination and curriculum for our department are prepared to allow not only graduates from computer science and media informatics, but also students who have studied various fields would like to join us. We invite you all to come and dive into the whirlpool of knowledge and participate in our lively research activities.
Construction and Elucidation of Intelligence: Realization of Flexible, Human-like Information Processing
Divisions and Groups

<table>
<thead>
<tr>
<th>Division</th>
<th>Group</th>
<th>Research and Education Topics</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological and Cognitive</td>
<td>Biological Information</td>
<td>Operating Principles of the Nervous System and the Brain and Basic Principles of Information Processing</td>
<td>INUI Toshio</td>
</tr>
<tr>
<td></td>
<td>Hearing and Speech Processing (Adjunct Unit)</td>
<td>Speech Observation and Signal Processing Techniques</td>
<td>MASAKI Shinobu</td>
</tr>
<tr>
<td>Intelligence Information</td>
<td>Foundation of Software Science</td>
<td>Fundamental Information Theory for Modeling and Abstraction</td>
<td>YAMAMOTO Akihiro</td>
</tr>
<tr>
<td>Processing</td>
<td>Intelligence Information Processing Principles</td>
<td>Information Modeling for Intelligent Information Processing Mechanism</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Applied Intelligence Information Processing</td>
<td>Understanding and Designing Interaction</td>
<td>NISHIDA Toyoaki</td>
</tr>
<tr>
<td>Intelligence Media</td>
<td>Language Media Processing</td>
<td>Natural Language Processing, Knowledge Engineering</td>
<td>KUROHASHI Sadao</td>
</tr>
<tr>
<td></td>
<td>Speech Media Processing</td>
<td>Recognition, Understanding, Conversion and Generation Methods for Speech, Music and Environmental Sounds</td>
<td>OKUNO Hiroshi G.</td>
</tr>
<tr>
<td></td>
<td>Visual Information Processing</td>
<td>Image Recognition and Understanding, Human Communication, Smart Energy Management</td>
<td>MATSUYAMA Takashi</td>
</tr>
<tr>
<td>Application of Multimedia</td>
<td>Video Media</td>
<td>Human-Computer Interaction through Video Images</td>
<td>MINOH Michihiko</td>
</tr>
<tr>
<td>(Affiliated)</td>
<td>Network Media</td>
<td>Techniques to Realize Multimedia Information Network</td>
<td>OKABE Yasuo</td>
</tr>
<tr>
<td></td>
<td>Media Archiving</td>
<td>Advanced Digital Archiving via Speech and Language Processing</td>
<td>KAWAHARA Tatsuya</td>
</tr>
<tr>
<td>Computational Biology</td>
<td></td>
<td>Analysis of Genome Information</td>
<td></td>
</tr>
<tr>
<td>Bio-system Informatics (Affiliated)</td>
<td>Biological Information Networks</td>
<td>IT for Analysis of Biological Information</td>
<td>AKUTSU Tatsuya</td>
</tr>
</tbody>
</table>

Graduate Curriculum

Courses for the Master's Program

- Introduction to Bioscience
- Introduction to Information Science
- Seminar on Biological Information Processing
- Foundation of Software Science
- Artificial Intelligence (Advanced)
- Multimedia Communication
- Language Information Processing (Advanced)
- Visual Interaction
- Advanced Research in Intelligence Science and Technology
- Advanced Study in Intelligence Science and Technology I

Courses for the Doctoral Program

- Advanced Seminar on Biological and Cognitive Processing
- Advanced Seminar on Intelligence Information Processing
- Advanced Seminar on Intelligence Media
- Advanced Seminar on Gene Informatics
- Advanced Seminar on Application of Multimedia
- Advanced Seminar on Intelligence Science and Technology II

Teaching Staff

Professors

- INUI Toshio; MASAKI Shinobu (ATR, Adjunct)
- YAMAMOTO Akihiro; NISHIDA Toyoaki; KUROHASHI Sadao; OKUNO Hiroshi G.; MATSUYAMA Takashi; MINOH Michihiko (M); OKABE Yasuo (M); KAWAHARA Tatsuya (M); AKUTSU Tatsuya (Institute for Chemical Research); TOSA Naoko (M); MASAKI Shinobu (ATR, Adjunct);

Associate Professors

- IGARASHI Atsushi ; INAGAKI Kosaku; KAWAHARA Daisuke; LIANG Xuefeng (G30); YADA Tetsushi; MUKUNOKI Masayuki (M); MIYAZAKI Shuichi (M); MORI Shinsuke (M); CUTURI, Marco (G30); NISHIMURA Ryouichi (ATR, Adjunct)

Senior Lecturers

- HOSOKAWA Hiroshi; MIZUHARA Hiroaki; KAWASHIMA Hiroaki; NOBUHARA Shosuke

Assistant Professors

- MAEGAWA Shingo; SASAOKA Takafumi; NAKAZAWA Koji; YOSHINAKA Ryo; OHMOTO Yoshimasa; SHIBATA Tomohide; ITOYAMA Katsutoshi; ICHINOSE Natsuhiko; FUNATOMI Takuya (M); AKITA Yuya (M); HAYASHIDA Morihiro (Institute for Chemical Research); TAMURA Takeyuki (Institute for Chemical Research); NAKAZAWA Toshiaki; NISHIDE Shun; MURAWAKI Yugo (M); TUNG, Tony (M); SUENAGA Kohei (M); Academic Center for Computing and Media Studies
Biological and Cognitive Processing

We aim to investigate both the cognitive and the physiological mechanisms of advanced biological, especially human, information processing and to explore possible applications of such mechanisms. For this purpose, we plan to analyze the information processing mechanisms of the nervous system at the molecular, biochemical and physiological levels; to elucidate the underlying principles; and to develop new artificial information processing systems. Moreover, we will analyze the processes of human sensation, perception, learning, memory, thought and inference from both a cognitive perspective and a computational neuroscience perspective in order to examine the mechanisms of these types of information processing.

Biological Information
—The Basis of Biological Information—

Brain is constructed from neural cells in self-organized fashion using genome DNA information. Our educational and research goals are to elucidate the molecular basis of information processing system in brain by using biological experiments and mathematical modeling. Specifically, we focus on four research areas: non-verbal communication; sensory information processing; autonomous regulation; and morphogenesis.
(Senior Lecturer: HOSOKAWA Hiroshi, Assistant Professor: MAEGAWA Shingo)

Cognitive Science
—Towards a systematic understanding of the human brain—

In order to obtain a systematic understanding of the human brain, we will conduct both experimental and theoretical research and instruction on how higher human cognitive functions are carried out. Specifically, we will undertake studies involving both psychological experiments and neural network simulations to determine how various higher-level functions, such as visual pattern recognition, the integration of sensory information from various modalities, verbal and nonverbal communication, and motor control are carried out in the brain. We will also measure human brain activity using brain-imaging techniques.
(Professor: INUI Toshio, Senior Lecturer: MIZUHARA Hiroaki, Assistant Professor: SASAOKA Takafumi)

Hearing and Speech Processing Adjunct Unit
—Exploring speech production and reception mechanisms—
[in collaboration with the Advanced Telecommunications Research Institute International (ATR)]

Speech is one of the most fundamental and important channels of communication. We aim to clarify the mechanisms of speech production and hearing processing using the latest observation and signal processing techniques. For speech production mechanism, we will create a speech production model based on MRI and the other visualization techniques. We will also approach hearing mechanism through functional MRI technique as well as experimentation and computer simulations.
(Professor: MASAKI Shinobu (ATR), Associate Professor: NISHIMURA Ryouichi (ATR))
Our goal is to develop flexible and intelligent information processing. We will identify the basic components and structures of information, as well as study extraction, recognition, understanding, and representation of information. We will also study the theoretical foundations of computer software in which modeling and abstraction play important roles.

Foundation of Software Science

—Theoretical approach to the construction of software that supports human intellectual activities—

In order to develop computer software that can perform the kind of intelligent information processing done by humans, it is necessary to abstract and formalize the problems in question. With this objective in mind, we study the mathematical semantics of software, as well as the methods of reasoning about the properties of software. In particular, based on the close relationship between mathematical logic and type theory, our research focuses on automatic verification of the correctness of software that builds on modern, emerging programming concepts and technologies such as functional programming, object-orientation, modularity, security, and concurrency.

(Associate Professor: IGARASHI Atsushi, Assistant Professor: NAKAZAWA Koji)

Intelligence Information Processing Principles

—Formulation of principles to support intelligent information processing—

We will formalize intelligent information processing seen in human activities and conduct studies on basic principles which make up these processes as well as realization methods. Specifically, this will involve education and research relating to artificial intelligence information processing such as inductive logic, knowledge discovery, hypothetical reasoning, and evolvable computers using mathematical logic, inference procedures, machine learning theories and self-organization.

(Professor: YAMAMOTO Akihiro, Associate Professor: INAGAKI Kosaku, Assistant Professor: YOSHINAKA Ryo)

Applied Intelligence Information Processing

—Design and understanding of social intelligence and interaction—

Our research centers on Social Intelligence Design and Conversational Informatics. Social intelligence design is a field of research aiming at understanding and augmenting social intelligence based on a bilateral definition of social intelligence as an individual's ability to better live in a social context and a group's ability to collectively solve problems and learn from experiences. Conversational Informatics focuses on understanding of human conversational behavior as well as on the design of conversational artifacts that can interact with people in a conversational fashion. We shed light on meaning creation and interpretation resulting from the sophisticated mechanisms in verbal/nonverbal interactions during conversation, in search of better methods of computer-mediated communication, human-computer interaction, and support for knowledge creation.

Our research activities are grouped into three branches. The first focuses on interaction measurement, analysis and modeling. Major topics are IMADE (real world Interaction Measurement, Analysis and Design Environment), interaction mining, and CEBE (Capture and Express human Behavior Environment by using immersive environment). The second focuses on intelligent interactive systems. Major topics are GECA (Generic Embodied...
The Intelligence Media Division deals with language, speech, and visual information, which are the fundamental media that represent, accumulate and communicate information. Research and education conducted at the Division cover a wide range of topics in theory and application, including analysis, recognition and understanding of information contents represented in these media, as well as media generation/editing to effectively represent and communicate information.

Language Media Processing

—Making computers that can understand language—

Language is the most reliable medium of human intellectual activities. Our objective is to establish the technology and academic discipline for handling and understanding language, in a manner that is as close as possible to that of humans, using computers. These include the following research areas.

—Fundamental Studies on Text Understanding—

We have been developing a method for automatically acquiring linguistic patterns of predicate-argument structures. By utilizing such knowledge, we study text understanding, i.e., recognizing the relationships between words and phrases in text.

—Development of Search Engine Infrastructure based on Deep Natural Language Processing—

We have been developing a next-generation infrastructure of information retrieval on the basis of the following techniques of deep natural language processing: precise processing based not on words but on predicate-argument structures, identifying the variety of linguistic expressions and providing a bird’s-eye view of search results.

—Studies on Improving Machine Translation—

To bring automatic translation by computers to the level of human translation, we have been studying next-generation methodology of machine translation on the basis of text understanding and a large collection of translation examples.

(Professor: KUROHASHI Sadao, Associate Professor: KAWAHARA Daisuke, Assistant Professors: SHIBATA Tomohide, NAKAZAWA Toshiaki, MURAWAKI Yugo)
Speech Media Processing
—Toward computer audition that can recognize and understand speech, music, environmental sounds and mixed sounds—

People demonstrate an amazing capacity to recognize and understand appearances and changes in events by audition with or without the integration of vision. Our educational and research objective is to enhance, in particular, robot audition to achieve a cocktail party effect for distinguishing conversation under noisy environments and to equip it with functions similar to the ability demonstrated by Prince Shotoku to discern a number of sounds simultaneously. For this purpose, we will study information fusion as well as signal processing, artificial intelligence, and cognitive science to distinguish not only spoken language dialogue but music and sounds, and recognize and understand environmental sounds as onomatopoeia.

(Professor: OKUNO Hiroshi G., Assistant Professors: ITOYAMA Katsutoshi, NISHIDE Shun)

Visual Information Processing
—Towards systems that understand visual information—

We humans are endowed with highly advanced visual perception capable of recognizing and understanding object appearances and behaviors. The goal of our education and research is to develop hardware and software technologies for systems that recognize and understand visual information as humans do. We study a 3D video technology for capturing dynamic 3D shapes and textures of people as is, a human communication system for understanding human intent and meaning behind human behavior to provide suitable information guidance, and a smart energy management system for realizing energy-efficient homes, offices, factories, and communities.

(Professor: MATSUYAMA Takashi, Senior Lecturers: KAWASHIMA Hiroaki, NOBUHARA Shohei)
Application of Multimedia (Affiliated)

Multimedia processing with computer devices has new and great potential for expression, information gathering and real-time dialogue processing. We aim to teach and study the technology of multimedia applications through the construction of educational environments in which we can make use of multimedia consisting of images, texts, sound, etc. In this way, students can engage in their studies while creating something of practical use in university courses.

Video Media

—Human-computer interaction through video media—

Computers convey information as "information media," which facilitate human communication. We are exploring "information media" technology for facilitating smooth communication through computers and aim to observe, archive and recognize human communication in intellectual activities. More specifically, we aim to achieve the following:

- a telepresence system for supporting human multimedia communication in the classroom;
- recognition of human activities in the kitchen to assist cooking;
- extracting 'real world information' for the protection of privacy against observation by various sensory devices;
- acquisition of shapes, motion, and colors of various objects to create virtual environments; and
- interaction between an actor and virtual objects in a virtual studio system.

(Professor: MINOH Michihiko, Associate Professor: MUKUNOKI Masayuki, Assistant Professor: FUNATOMI Takuya)

Network Media

—Towards a ubiquitous networking world—

In a ubiquitous networking world, everything is capable of computing and networking, enabling constant Internet connectivity. Our research goal is to achieve just such an environment. For this purpose, we are working on fundamental research issues pertaining to the next-generation Internet, including IPv6 architecture, quality-aware transfer of multimedia data, mobility, zero configuration, and security. We are also working on integration technology of information, communication, and energy. We study how to apply Internet protocols and algorithms, such as routing, matching, reservation, and interruption, to power management.

(Professor: OKABE Yasuo, Associate Professor: MIYAZAKI Shuichi)

Media Archiving Research

—Advanced Digital Archiving through Speech and Language Technologies—

Meta-data indexing and annotation are vital for efficient access to multi-media digital archive such as lectures and meetings. We are studying speech and natural language processing oriented for this application: specifically, (1) automatic speech transcription of lectures and meetings, (2) automatic indexing and summarization, and (3) dialogue strategies for efficient access to very large archive.

(Professor: KAWAHARA Tatsuya, Associate Professor: MORI Shinauke, Assistant Professor: AKITA Yuya)
Computational Biology

— Toward decoding genome information —

The genome is the entirety of organism's hereditary information, and its substance is a chemical compound called DNA. The structure of DNA is regarded as a linear string consisting of four bases (A, G, C and T). While the length is no more than several giga bases long, and the base sequence seems to be random, it surely encodes information emerging development, behavior and individuality of an organism. We try to capture the essence of life by decoding the information with various techniques of information science.

(Associate Professor: YADA Tetsushi, Assistant Professor: ICHINOSE Natsuhiro)

Bio-system Informatics (Affiliated)

Biological systems and creatures are ineffably complex systems in which many kinds of chemical structures, proteins, genes and other objects interact with one another. We examine these as interactive networks to implement education and research aimed at elucidating and understanding the system, mainly from the perspective of information science.

Biological Information Networks

— IT for analysis of biological information —

We develop algorithms for inferring interactions among genes, proteins and chemical structures, and for analyzing their interactive networks based on mathematical methods. We also develop algorithms and software tools for other problems in bioinformatics, including sequence analysis and inference of higher-order structures and functions of protein.

(Professor: AKUTSU Tatsuya, Assistant Professors: HAYASHIDA Morihiro, TAMURA Takeyuki)