アドミッションポリシー

社会情報学専攻では、高度に複雑化する情報化社会の構造を解明し、実際に情報システムを構築することができる人材の育成を目指しています。さらに、文化、経済、環境、防災の各方面でグローバル化する人間の社会活動を支える人材を育成します。

そのため、多様な分野の出身者を受け入れており、入学試験においては各自が学んだ専門分野の知識を問う専門科目の他、情報学の基礎知識を問う情報学基礎を修士課程、博士課程ともに課しております。入学試験ではこれらの筆記試験と面接試験の成績をあわせて評価をおこないます。

入学後は、修士課程、博士課程ともに複数アドバイザー制を導入しており、直接の指導教員の他、2名のアドバイザーを加えた指導をおこなっています。また、修士課程においては、専攻基礎科目として情報社会論、情報システム設計論、情報システム分析論及び情報システム論実習を提供しています。

社会情報学専攻の志望区分は以下の13区分です。

<table>
<thead>
<tr>
<th>志望区分</th>
<th>講座名</th>
<th>分野名</th>
</tr>
</thead>
<tbody>
<tr>
<td>社－1a</td>
<td>社会情報モデル講座</td>
<td>分散情報システム分野</td>
</tr>
<tr>
<td>社－1b</td>
<td>社会情報モデル講座</td>
<td>分散情報システム分野</td>
</tr>
<tr>
<td>社－2</td>
<td>社会情報モデル講座</td>
<td>ヒューマンロボットインタラクション分野</td>
</tr>
<tr>
<td>社－3</td>
<td>社会情報モデル講座</td>
<td>ソーシャルメディアユニット</td>
</tr>
<tr>
<td>社－5b</td>
<td>社会情報ネットワーク講座</td>
<td>広域情報ネットワーク分野</td>
</tr>
<tr>
<td>社－6</td>
<td>社会情報ネットワーク講座</td>
<td>情報セキュリティ分野（連携ユニット）</td>
</tr>
<tr>
<td>社－8</td>
<td>生物環境情報学講座</td>
<td>生物資源情報学分野</td>
</tr>
<tr>
<td>社－9</td>
<td>生物環境情報学講座</td>
<td>生物環境情報学分野</td>
</tr>
<tr>
<td>社－10</td>
<td>地域・防災情報システム学講座</td>
<td>総合防災システム分野</td>
</tr>
<tr>
<td>社－11</td>
<td>地域・防災情報システム学講座</td>
<td>巨大災害情報システム分野</td>
</tr>
<tr>
<td>社－12</td>
<td>地域・防災情報システム学講座</td>
<td>危機管理情報システム分野</td>
</tr>
<tr>
<td>社－13</td>
<td>医療情報学講座</td>
<td>医療情報学分野</td>
</tr>
<tr>
<td>社－14</td>
<td>情報フルーチャー教育講座</td>
<td>情報フルーチャー教育分野</td>
</tr>
</tbody>
</table>
Admission Policy

The Department of Social Informatics trains people who are able to explain the highly complex structures of our information society and construct real-life information systems. We also train people who are able to support human social activities in globalizing world in a variety of fields such as culture, economics, environment, and disaster response.

The department accepts applicants from a wide range of academic backgrounds. The entrance examinations for the master’s and doctoral programs test for specialized knowledge in the fields studied by individual applicants as well as basic knowledge of informatics. Examinations consist of a written and an oral part, and applicants are evaluated on their overall performance in both.

The department has multiple advisor system for students in both the master’s and doctoral programs. Students will have two advisors in addition to the supervisor. Students in the master’s program are provided with basic courses of Information and Society, Information System Design, Information System Analysis, and Practice of Information Systems.

There are 13 Application Codes in the Department of Social Informatics, as listed below.

<table>
<thead>
<tr>
<th>Application Code</th>
<th>Division</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI- 1a</td>
<td>Social Information Model Division</td>
<td>Distributed Information Systems Group</td>
</tr>
<tr>
<td>SI- 1b</td>
<td>Social Information Model Division</td>
<td>Distributed Information Systems Group</td>
</tr>
<tr>
<td>SI- 2</td>
<td>Social Information Model Division</td>
<td>Human-Robot Interaction Group</td>
</tr>
<tr>
<td>SI- 3</td>
<td>Social Information Model Division</td>
<td>Social Media Unit</td>
</tr>
<tr>
<td>SI- 5b</td>
<td>Social Information Network Division</td>
<td>Global Information Network Group</td>
</tr>
<tr>
<td>SI- 6</td>
<td>Social Information Network Division</td>
<td>Information Security Group (Joint Unit)</td>
</tr>
<tr>
<td>SI- 8</td>
<td>Biosphere Informatics Division</td>
<td>Bio-resource Informatics Group</td>
</tr>
<tr>
<td>SI- 9</td>
<td>Biosphere Informatics Division</td>
<td>Environmental Informatics Group</td>
</tr>
<tr>
<td>SI- 10</td>
<td>Regional and Disaster Management Information Systems Division</td>
<td>Integrated Disaster Management Systems Group</td>
</tr>
<tr>
<td>SI- 11</td>
<td>Regional and Disaster Management Information Systems Division</td>
<td>Disaster Reduction Information Systems Group</td>
</tr>
<tr>
<td>SI- 12</td>
<td>Regional and Disaster Management Information Systems Division</td>
<td>Regional and Disaster Management Information Systems</td>
</tr>
<tr>
<td>SI- 13</td>
<td>Medical Informatics Division</td>
<td>Medical Informatics Group</td>
</tr>
<tr>
<td>SI- 14</td>
<td>Information Fluency Education Division</td>
<td>Information Fluency Education Group</td>
</tr>
</tbody>
</table>
データの価値査定 … IoT時代においてデータは“New Oil”であると言われ、デジタル経済における価値が認識されています。移動経路や心拍データなど個人の活動履歴などの時空間データを収集、集計したデータは高い有用性を持ちますが、そもそもどのようなデータがどのような価値を持つかを査定する方法が未確立していないため、そのような査定方法に関する研究を行います。

地球科学データのメタデータ管理 … 地球環境を構成する要素は多様で、複雑に相互に関連しています。現代の科学技術は、専門化、細分化する方向で発展してきており、分野間でのデータや情報の共有は困難です。分野を超えた地球科学データの統合的利用を推進し、データへのアクセスビリティを高めるために、我々は地球科学に関係する多様なデータセットに対してメタデータを付し、検索するためのシステムを開発しています。特にメタデータの整備においてはキーワード情報がデータの検索・検索に有用であると考え、メタデータ作成の際に適切なキーワードを推奨する手法に関する研究を行っています。

時制情報の処理とアクセス … 近年、我々の社会は膨大な量のテキストデータを蓄積しています。ニュース、書籍、ウェブアーカイブなどのテキストアーカイブは、何百万もの文書を保存し、時制解析のための豊富なデータを提供しています。そのような時制データを調べることにより、社会発展の種々の側面の解析やそれまでに知られていなかった興味深い知識を抽出することが可能になります。我々は、時制テキストの集まりを効率的に解析し、因果関係、発展パターン、我々の社会に関連する現れつつあるあるいは消滅しつつあるトレンドなど理解する方法を研究しています。さらに、多くのアーカイブは自由にアクセスできるため、新たな文書検索モデル、時間横断検索、利用者が時制データの意味つけをし易く情報を発見する支援を行う比較技術あるいは時制要約技術などの「過去との対話」のための新規な方法を開発しています。

情報推奨システム … WWW上では、Web ページだけでなく、ブログやツイートなどのユーザが生成するコンテンツも増加する一方です。また、電子図書館分野においても、膨大な数の本や学術論文などが、出版社されるようになりました。このような状況において、ユーザが自分の興味や嗜好に適合する情報を検索することは、ますます難しくなっています。ユーザは自分が生成した情報を容易に発信できるようになった一方、その有用性や信頼性を考慮したうえで、情報を提供することも、非常に重要です。これを実現するために、我々は、ユーザーコンテンツを、それらの特性に基づいてモデル化することで、ユーザの嗜好に適合する情報を推奨するための手法を、より正確で有用な情報を提供する手法について、研究しています。

データのプライバシーとセキュリティ … パーソナルデータはAIの燃料と言われています。しかし、プライバシーとセキュリティの問題から、これらの機密性の高いデータを収集・共有することが難しくなっており、データサイエンスの発展を阻害する要因となっています。我々は、信頼できるデータサイエンスを実現するために、プライバシーを保護した情報共有、データマイニング、機械学習のための最先端の技術を研究しています。

社会情報モデル講座 分散情報システム分野
教授 吉川 正俊 特定準教授 ヤトフ アダム 特定準教授 杉山 一成
助教 清水 敏之 特定助教 曹 洋
http://www.db.soc.i.kyoto-u.ac.jp/

志望区分: 社-1a
Data Science: Fundamental Studies and Social Deployment

Contemporary society relies heavily upon the massive amount of information mutually connected on the Internet. Social progress will depend upon the establishment and continuous revision of technologies to enable the rapid and accurate transmission of data, and technologies to allow rapid search of massive volume of data to retrieve required information in a timely manner. For this reason, we will conduct fundamental research on database, information retrieval, data mining, geographic information systems, social network analysis, and privacy protection. We also conduct application-oriented research such as health/medical big data analysis, scientific data management, integrated utilization of knowledge bases and search engines, utilization of scholarly data, educational information systems, in cooperation with domain experts.

Data Valuation: Data is said to be the “New Oil” in the IoT era, and its value in the digital economy is being recognized. Although spatio-temporal data such as trajectories and heart rate data are highly useful, there is no method of assessing the value of such data in the first place, so we are conducting research on such an assessment method.

Metadata Management of Earth Science Data: The factors that construct the Earth's environment are diverse and related to each other in a complex manner. However, modern scientific technologies have been developed on the direction of specialization and subdivision, and it is difficult to share the data and information among different fields. In order to promote integrated use beyond the boundaries of academic fields and improve data accessibility, we are developing a metadata management system for various earth science datasets and a search system for the datasets. In the metadata, keyword information is especially useful for searching and browsing data. We are developing methods to recommend proper keywords during metadata creation.

Temporal Information Processing and Access: Our society has accumulated enormous quantities of text data over the course of recent years. Text archives such as news, book or web archives store millions of documents offering rich data for temporal analysis. It is then possible to analyze various aspects of societal evolution and to extract interesting and previously unknown knowledge when looking at such temporal data. We study methods for effective analysis of temporal text collections to understand causal relations, evolution patterns, emerging or disappearing trends related to our society and other related aspects. Moreover, as many archives are under free access we design novel methods for “interacting with the past” such as new document retrieval models, across-time search and comparison techniques or temporal summarization techniques to empower users to make sense of temporal data and to find required information.

Recommender Systems: On the WWW, not only Web pages but also user generated contents such as blogs and tweets are constantly increasing. Additionally, in digital libraries, a huge number of books, scholarly papers, and so on have been published. Under these circumstances, it is getting more and more difficult for users to search for information relevant to their interest or preference. While users can easily distribute their generated contents, it is definitely important to provide information by taking its helpfulness and reliability into account. To achieve these goals, we work on recommending information relevant to each user's preferences and identifying more accurate and helpful information.

Data Privacy and Security: Personal data is the fuel of AI. However, it is increasingly difficult to collect and share these highly sensitive data due to privacy and security concerns, which in turn hinder the development of data science. We study state-of-the-art privacy-enhanced techniques for information sharing, data mining, and machine learning to enable trustworthy data science.
ICTの進化に伴い、ビジネスや日常生活など実世界のアクティビティがインターネット上に射影され、ユーザ体験の向上に貴重な情報源であるWebやUGC（ユーザ生成コンテンツ）を生成しつつあります。そこで、我々は実世界の記録であるWebやUGCを対象に、Webマイニング、情報検索、マルチメディア情報処理を基盤に、オンラインのサイバーワールドとオフラインの実世界のインタラクションについて追究し、ユーザによるユーザのためのユーザ一体のユーザ中心の情報システムについて研究開発を行います。

研究テーマ
- 観光情報学: 多様な観光ニーズに応えるため、UGCから多様な観光リソースの発見・プロモーション、ユーザ旅行体験の体系化と検索などについて研究開発を行います。
 キーワード: LBS (Location Based Service), 地域情報マイニング, 時空間情報, UGC, SNS,

穴場スポット発見システム Anaba

- 投資情報学: 株、投資信託、FXなど投資活動における理解支援や意思決定支援などについて研究開発を行います。
 キーワード: ヨーシャルトレーディング, 因果関係マイニング, 企業関係分析, 理解支援, エキスパート検索

エキスパートトレーダーの発見システム W2F

- 情報栄養学: 情報の栄養成分という概念を導入して、「バランスよく、美味しく」情報を提供・獲得するシステムを実現するための基盤技術について研究開発を行います。
 キーワード: エンティティマイニング, 関係マイニング, 情報補完, マルチメディア

多様性指向のニュースアプリ NewsSalad

問合せ先 〒606-8501 京都市左京区吉田本町 京都大学大学院情報学研究科社会情報学専攻
社会情報モデル講座 TEL:075-753-5885 FAX:075-753-4970
Description

Interaction of Web and Real World

With the progressing of ICT, more and more activities in the real world have been projected onto the Internet. As the records of real world, Web and UGC (User Generated Contents) generated by such projection become more and more useful and important to improve user experiences. By applying the fundamental technologies of Web mining, information retrieval and multimedia information analysis, our research group studies on the interactions between the real and cyber worlds to develop user centric information systems of the users, for the users, by the users and with the users.

Research Topics

・Sightseeing Informatics: Discover and promote various POIs by UGC(user generated contents) mining to satisfy diverse tour needs. Keywords: LBS (Location Based Service), GIS (Geographical Information Systems), Temporal-spatio Information Mining

・Investment Informatics: Apply information technologies to support decisions-making and understanding on investments (stock, trust, and FX, etc.). Keywords: Causality Mining, Expert Ranking, Interests Relationship Mining, Social Trading, Understanding Support

・Informational Nutrition: Introduce the notion of "nutrition" to informatics, and study on how to provide users information in balanced and delicious ways. Keywords: Information Complementation, Entity Mining, Relation Mining, Multimedia Contents Analysis

Contact

Distributed Information Systems Group, Social Information Model Division, Department of Social Informatics, Graduate School of Informatics, Kyoto University
Address: Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501
Telephone: 075-753-5885 Fax: 075-753-4970
社会情報モデル講座 ヒューマンロボットインタラクション分野
教授 神田崇行 特定講師 Jani EVEN 助教 Drazen BRŠIĆ
特定研究員 Daniel REA, Yui LIU, Thomas KACZMAREK, Malcolm DOERING
http://www.robot.soc.i.kyoto-u.ac.jp/
志望区分：社-2

－「ロボット社会」に向けた、日常社会で活躍するロボットの研究－
自動運転車や無人店舗など、高度な人工知能を備えた情報システムの利用がリアル空間へと広がり続けています。こういった「ロボット社会」化に向けて、センサ情報をもとに実空間においてリアルタイムに行動する実体を持ったエージェントを広く「ロボット」としてとらえ、人々と共存・協調して活動する「人らしいロボット」などの様々なロボットの実現を目指します。そのために、知能ロボティクス、インタラクション、センサネットワーク、人工知能などに関する基礎研究を進め、サービス産業、協調作業、高齢者支援、学習支援、ヘルスケアなどの応用に結び付けていきます。以下に、研究テーマの一例を示します。

センサネットワーク
人々の日常行動をモデル化し理解するためのセンサネットワーク技術や、それを利用して活動するロボットを実現するネットワークロボット技術の研究を進めています。Deep learning（深層学習）等の最新技術も用いて人々の社会的な行動を認識する研究や、ショッピングモールでの1年にわたる移動行動の観測データ等の日常行動の「ビッグデータ」から有意義な情報を取り出す、といった最先端の研究に取り組みます。

ヒューマンロボットインタラクション
円滑で効果的に人々とコミュニケーションするロボットを作り出すために、人同士の様々なインタラクション（視線、ジェスチャー、話しかけ方など）の中にある「人らしい」エッセンスをモデル化して利用する方法や、ロボットが人間の意図や気持ち、さらには人間社会の常識やモラルを理解して行動する方法などを研究します。これまでにも、世界に先駆けて、小学校、ショッピングモール、デイケアセンター、といった実際の日常生活でのフィールド研究に取り組み、人々と「人らしいロボット」との間のリアルなインタラクションを明らかにする研究も進めています。

サイバーフィジカルシステム
人々の行動をモデル化してコンピュータ上で再現することで、人々の一歩先の将来行動を予測したり、システムが事前に計画を立てたりできるようにするサイバーフィジカルシステムを研究します。これまでに、人々の歩行時のインタラクションをモデル化する歩行者モデルを構築し、ロボットの周囲でおきる現象をコンピュータ上で再現しました。予測計算によって、人々が次々にロボットに群がる混乱現象や、子供のインタラクションがエスカレートして、ロボットをたたいたり、押したりする「ロボットいじめ」といった調和の問題を回避できました。
-Intelligent robotics for our daily environments -

There are a growing number of everyday applications for artificial intelligence and robotics such as social robots, self-driving cars, and automated shops. We expect that future society will be ubiquitous with various robots. Towards such a robotized society, we aim to study robots that interact with people and operate in harmony alongside them. Such robots are embodied agents with sensory feedback that have the ability to interact in real-time with their environments. Consequently, we conduct fundamental research in intelligent robotics, human interaction, sensor networks, and artificial intelligence (AI). We are aiming for applications in the service industry, elderly care, health care, collaborative work places, and learning. Below are some example research themes:

Sensor network
Various sensors and IoT (Internet of Things) devices will be ubiquitous in our daily life. We investigate techniques to instrument distributed sensor networks to recognize human social behaviors: e.g. state-of-the-art approaches such as deep neural network (DNN). This enables us to observe peoples’ daily behavior and build models from observed “big data” to provide a comprehensive insight about collective social behavior; e.g. studying one year’s worth of data from pedestrians in a shopping mall. Furthermore, we integrate a sensor network and robots to develop a sophisticated network robot system with “ambient intelligence”.

Human-Robot Interaction
Robots can serve as a natural interface for computer/IoT systems. Hence, we conduct a series of studies for human-robot interaction. One focus is endowing "human likeness" to a robot (both behaviorally and computationally), which will allow it to interact with people in a natural manner. For instance, we have realized human-like interaction using gaze and gesture. Our recent challenges aim to investigate methods to allow a robot to understand human intuition, and make it interact with people in a morally acceptable way. Further, we investigate the social acceptance of robotic systems “in the wild” with real-world field studies.

Cyber-physical system (CPS)
We study modeling techniques that reproduce relevant human behaviors in simulation, so that a system can anticipate how its behaviors can potentially influence people. For instance, we have developed a pedestrian model and simulated their behaviors around a social robot. With this simulation a robot can anticipate the gathering of a curious crowd around itself (see above Figure), or potential bullying from nearby children, so that it can avoid problematic situations before they occur.
－世界中のあらゆる情報を有効に共有・活用できる情報環境の実現－

コンピュータとインターネットの発展により、われわれは以前には考えられなかったような多様かつ大量の情報を、容易に共有・活用できるようになっており、このことが社会や暮らしを大きく変えています。このような環境の実現には「様々な情報を収集・分析・抽出する技術」と「そこから自発的に検索する技術」が必要です。これらの技術をさらに発展させ、世界中のあらゆる情報を有効に共有・活用できる情報環境を実現することを目標に研究を行っています。

研究テーマ

1. Web情報を利用した社会情報分析：現在のWeb上には様々な情報が集積されており、実社会に関する様々な情報をも収集できるようになっています。そのため、Webは社会のセンサであるとも言われます。しかし、Web上の情報には偏りがあり、社会の正確な姿を知るにはこの偏りを補正する技術が必要です。そのような補正を行う技術を開発することを目的に研究を行っています。

2. ソーシャルネットワーク分析：実世界の情報の手掛かりとなるWeb上の情報源の一つにソーシャルネットワークがあります。ソーシャルネットワークのデータは個人レベルのシクロ的な情報やリアルタイム性的高い実世界情報の情報源として特に有用です。この貴重な情報源から様々な情報を抽出する技術を開発しています。

3. 情報アクセスインタフェース：大量情報の処理では、かつては計算機の処理の高速化が重要でした。現在では、計算処理ではなく人間による出力の閲覧が律速段階という状況も増えています。そこで、人間が大量の情報を効率的に閲覧するためのユーザインタフェースの研究を行っています。

4. 情報検索：Web検索と言えば、キーワードを入れると、それに関連するWebページのスニペットがリストされるというスタイルが確立されていますが、今後は十分な常と最適とは言い切れません。日々、大量の人間が膨大な時間を情報検索に費やしており、この作業効率の向上は社会的に重要な課題です。
Thanks to the advance of computer and network technologies, we can now easily share and utilize data of large volume and high diversity which we cannot even think about until decades ago. It has been changing our society and daily life. This environment relies on technologies for collecting, analyzing, and extracting various kinds of information, and for retrieving relevant information from it. Our research purpose is to enhance these technologies, and to make all useful information in the world easy to share and utilize.

Research Topics

1. **Social information analysis based on Web data:** Today’s Web is an important resource of information on the “offline” world. The Web can be a good sensor of the society. Data on the Web are, however, biased in various ways, and we need to remove such biases to obtain the accurate information on the society. Our goal is to develop methods of removing such biases.

2. **Online social network analysis:** Online social network is one of useful resources of information on the real world. It is especially useful for individual-level information and real-time information. We are developing methods of extracting useful information from this valuable data resource.

3. **Information access interface:** The most important challenge in large data processing was how to make the computation fast. Nowadays, however, the bottleneck is sometimes not the computer but the user browsing the outputs. We are developing new user interface design and technologies for making tasks of browsing large data more efficient.

4. **Information retrieval:** Web search engines that list pages relevant to given keywords are widely used now. This style, however, may not always be the best one. Many people spend considerable time for information search every day, and technologies for making it more efficient is an important research topic.
社会情報ネットワーク講座 広域情報ネットワーク分野

特定准教授 林 冬恵

志望区分：社－5b

－コラボレーション基盤のデザイン－

インターネットを核としたグローバルコラボレーションを目指して、先端技術を創出しています。インターネット上のクラウドサービスと私たちが住む物理世界とのインタラクションを実現するために、人工知能やヒューマンインタフェース技術を基礎に、サービスコンピューティングとInternet of Things (IoT)の最新技術課題に取り組みます。さらに、開発した多言語コラボレーション基盤「言語グリッド」を、欧米やアジアの大学・研究機関と協力しながら展開しています。

研究テーマ
1. 言語グリッド：言語の壁を超えることを目的に、機械翻訳や対訳辞書などを通じて多言語サービス基盤の研究を欧米やアジアの研究者と協力して進めています。さらに、言語グリッドを用いた多言語コミュニケーションシステムと多言語IoT環境の研究に挑戦しています。
2. サービスコンピューティング/Internet of Services (IoS)：スマート上のアプリケーションやインターネット上のサービスを自由に組み立て可能なIoS基盤技術を研究しています。特に、サービスネットワークの自己組織化、QoS (Quality of Service)に基づくサービス連携の研究、トップカンファレンスに多数採択されています。言語グリッドはIoSの技術を用いて実現されています。
3. Internet of Things (IoT)：人とモノのインタラクションを目標として、各種のセンサーやデジタルファプリケーションを駆使しIoT環境の研究に取り組みます。IoTとIoTを組み合わせることで、グローバルなコラボレーション環境を実現します。
4. マルチエージェントシステム：独立の意思を持つデバイスやソフトウェアをエージェントと呼びます。多数のエージェントが協力したり、競争したりするマルチエージェントシステムは人工知能の中心的な課題です。そこで、IoSやIoTの基礎技術として、その原理やアルゴリズムを研究しています。

(左)子どもの多言語コミュニケーション支援 (右)ベトナム農業支援のための多言語コミュニケーション設計

グローバルコラボレーションを実際に支援するために、国際的に活動している非営利団体(NPO)と共同で、研究成果を社会に展開しています。NPOが開催する国際的な会議や、世界の子ども達が集まるワークショップでの多言語コミュニケーション支援を行っています。

問合せ先 〒606-8501 京都市左京区吉田本町 京都大学大学院情報学研究科社会情報学専攻
社会情報ネットワーク講座 TEL:075-753-4820 FAX:075-753-4820
特定准教授 林 冬恵 lindh@i.kyoto-u.ac.jp
Design of Collaboration Infrastructure

This group aims at generating advanced technologies for Internet-based collaboration. Based on artificial intelligence and human interface as foundations, we address latest technological challenges of services computing and Internet of Things (IoT) to realize the interaction between various cloud services on the Internet and the physical world where we live in. Moreover, we conduct global research activities with researchers in the US, Europe and Asia to promote the Language Grid, a multi-language service infrastructure we have developed for supporting intercultural collaboration.

Research Topics

1. **Language Grid**: To overcome the language barriers, we conduct worldwide collaboration to enhance the research of multi-language service infrastructure for combining various language resources like machine translators and bilingual dictionaries. We also tackle the research on multi-language communication systems and IoT environments by using the Language Grid.

2. **Services Computing/Internet of Services (IoS)**: We conduct the research on advanced technologies for IoS infrastructure that freely enables the composition of smartphone applications and cloud services on the Internet. In particular, our research results on service composition based on QoS (Quality of Service) and self-organization of service networks have been accepted numerous times by top international conferences. Moreover, IoS technologies are the foundations of the Language Grid.

3. **Internet of Things (IoT)**: To realize the interaction between people and things, we focus on the IoT environment that is driven by various sensors and fabrications. By connecting IoS and IoT seamlessly, we aim at realizing the unique collaboration environments.

4. **Multiagent Systems**: A device or software with autonomous intentions can be regarded as an agent. Multiagent system is a system where multiple agents coordinate and compete with each other, which is an essential research topic in the area of artificial intelligence. We focus on the research of theories and algorithms for multiagent as foundations of IoS and IoT.

Left: Multilingual support for youth communication, Right: Designing multi-language communication services for agricultural knowledge support in Vietnam.

Our projects involve wide collaboration with NPOs for international activities, and our research results make direct contributions to society. We have been supporting multilingual commutation in international symposiums and workshops for youths organized by NPOs.

Contact: Social Information Network Division, Department of Social Informatics, Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501 TEL/FAX: 075-753-4820

LIN Donghui (lindh@i.kyoto-u.ac.jp)
概要

- 安全なネットワーク社会を暗号で実現する-

本講座では、安全・安心なネットワーク社会を実現するために、単に盗聴を防ぐ秘匿技術のみならず、通信相手を認証しデータの正当性（改ざんされていないこと）を保証する電子署名やプライバシーを保証しつつ高度なネットワークサービスを提供する暗号プロトコルなど、総合的な技術・理論体系としての現代暗号について研究を進めています。

主なテーマ

【暗号基礎理論】現代暗号で中心的な役割を果たす公開鍵暗号、ディジタル署名、ゼロ知識証明などについて、安全で効率のよい方式や新たな機能を持つ方式を探求します。また、安全であるとはどういうことができるかを理論的に解明します。

【暗号プロトコル】ビットコインに代表される暗号通貨や電子投票など、暗号プロトコルと呼ばれるアプリケーションに関して、新たな機能や優れた効率・安全性を持つ新しい構成法を提案し、そのネットワーク社会での有効性を探求します。

【実装安全性】理論的に安全性が確認された暗号方式やプロトコルであっても、それらを実装したシステムに対しては理論的なモデルを超えた攻撃があり得ます。様々な形での秘密情報漏えいや意図的な故障に対する安全性の解析を通じて、実世界で安全な暗号システムを探求します。

教員

教授 阿部 正幸（abe.masayuki.7a@kyoto-u.ac.jp）
教授 神田 崇行（kanda@i.kyoto-u.ac.jp）
准教授 ティブシメディ（tibouchi.mehdi.5n@kyoto-u.ac.jp）

研究室HP http://www.ai.soc.i.kyoto-u.ac.jp/renkei/security/public_html/
Description

Cryptography for a secure connected society.

In addition to hiding sensitive information, modern cryptography serves more advanced purposes such as data integrity, entity authentication, and various form of privacy protection required for personalized services. In our laboratory, we study the theory and practice on public-key cryptography as a fundamental technique to bring security and privacy to our connected society. Our research topics include, but are not limited to:

Foundations of Cryptography: We carry out research on cryptographic primitives such as public-key encryption, digital signatures, and zero-knowledge proof systems, which have been central in modern cryptography; look for efficient, useful, and secure schemes; and also attempt to formalize what security means precisely in a theoretical sense.

Cryptographic Protocols: Crypto currencies like Bitcoin are well-known examples of so-called cryptographic protocols, which combine cryptographic building blocks such as hash functions and digital signatures in order to achieve more advanced functionalities. We search for new cryptographic protocols that realize novel services, and/or achieve better security, privacy, and performance.

Implementation Security: Although cryptographic schemes usually come with theoretical security guarantees, implementations can have their security compromised by attacks beyond the scope of theoretical security models. This includes various types of physical attacks that extract secret information from the physical behavior of cryptographic devices, or by deliberately causing those devices to malfunction. We study security in such circumstances and look for more secure cryptosystems in real world environments.

Teaching Staff

Professor ABE Masayuki (abe.masayuki.7a@kyoto-u.ac.jp)
Professor KANDA Takayuki (kanda@i.kyoto-u.ac.jp)
Associate Professor TIBOUCHI Mehdi (tibouchi.mehdi.5n@kyoto-u.ac.jp)

Website: http://www.ai.soc.i.kyoto-u.ac.jp/renkei/security/public_html
社会情報学専攻

生物圏情報学講座 生物資源情報学分野

教授 守屋 和幸 助教 西澤 秀明

志望区分：社－8

－生物資源の利用と保全を目指して－

生物圏における有用生物資源の持続的生産を可能とするシステムの評価、絶滅危惧種の保全や資源生物生産をおこなう地域社会の活性化を目指したシステムの検討など、多岐にわたるテーマで研究・教育をおこなっています。これらのテーマにおいて必要とされる生物資源情報の収集・分析のため、GPSやバイオテレメトリー・バイオロギング、画像解析などの様々な技術を用いた新たな手法の開発と利用をおこなって来ています。

研究テーマ
1. 資源動物・絶滅危惧種の行動・生態に関する研究

資源動物・絶滅危惧種の適切な管理と保全のために、その行動・生態を知ることが不可欠です。GPSやバイオテレメトリー・バイオロギング技術、音響観測技術を用いることで、絶滅が危惧されるメコンオオナマズやウミガメ類などの保全に向けた研究をおこなっています。

2. 水圏動物の行動情報の収集・分析手法構築に関する研究

資源動物の維持管理ならびに絶滅危惧種の保護保全に有用な、水圏動物の行動測定に関する技術開発に取り組んでいます。例えば、個体レベルではなく、群れ・個体群をモニタリングできるバイオテレメトリー技術、写真に基づく動物個体識別手法を世界に先駆けて開発しています。

教員
教授 守屋 和幸 (moriya@i.kyoto-u.ac.jp)
助教 西澤 秀明 (nishizawa@i.kyoto-u.ac.jp)

生物圏情報学講座
電子メール：breoffice@bre.soc.i.kyoto-u.ac.jp
ホームページ：http://bre.soc.i.kyoto-u.ac.jp/
Bioresource Informatics Group, Biosphere Informatics Division

Professor: MORIYA Kazuyuki;
Assistant Professor: NISHIZAWA Hideaki

Application Code: SI- 8

Seeking the sustainable use and conservation of bioresources

This group discusses and studies a wide range of themes including system evaluation for the sustainable production of bioresources, the conservation of endangered species, and the revitalization of local communities engaged in bioresource production. In order to gather and analyze bioresource data, this group works on the development and application of new research methods involving the use of GPS, biotelemetry, bio-logging, and image analysis.

Teaching Staff
Professor MORIYA Kazuyuki (moriya@i.kyoto-u.ac.jp)
Assistant Professor NISHIZAWA Hideaki (nishizawa@i.kyoto-u.ac.jp)

Research Topics
1. Behavior and ecology of economically-valuable animals and endangered species
 For the management and conservation of economically-important animals and endangered animals, it is necessary to understand their behaviors and ecologies. By using GPS, biotelemetry, bio-logging, and acoustic monitoring, we conduct researches about endangered Mekong giant catfish, sea turtles, etc.

 Ecology of the endangered Mekong giant catfish
 Behavior and ecology of the green turtle

2. Development of information systems to collect and analyze aquatic animal behaviors
 We are engaged in creating information systems to collect and analyze aquatic animal behaviors in order to manage economically-import animals and conserve endangered species. For example, we developed a novel biotelemetry system that is not only able to collect individual data but also school/population data and a photo-identification method.

 Development of information systems to monitor the schooling behavior in aquatic animals:
 Schooling behavior in Pacific Bluefin tuna.

 Photo-identification of green turtles
生物圈情報学講座 生物環境情報学分野

教授 大手 信人 准教授 小山 里奈 助教 Christian Vincenot

志望区分：社－9

概要

－生物系の持続的な利用と保全を目指し、社会と自然環境の関わりを探究する－

種々の生物群集と物理環境からなる陸上生態系に注目し、その保全や持続的な利用を目指して、社会と自然環境の関係に関する教育と研究を行っています。自然生態系から人間社会まで多様なフィールドを対象とし、情報の収集に用いる手法と、野外調査から試料の化学分析・同位体分析、アンケートやインタビューまで、多岐にわたります。フィールドにおいて収集されたデータをもとに、GIS等を用いた時空間的解析、現象のモデル化など、様々な方法を用いて人間を含む生物とその環境について理解すること、その知見をどのように課題解決に応用していくかを考えています。

教員
教授 大手信人（nobu@i.kyoto-u.ac.jp）
准教授 小山里奈（linak@i.kyoto-u.ac.jp）
助教 Christian Vincenot（vincenot@i.kyoto-u.ac.jp）

研究テーマ

1. 生物圈における物質の循環とそのモデル化に関する研究 生態系の内外を循環する水・養分・その他の物質の動きとその動きを司る要因について明らかにするための研究を行っています。
2. 生態学情報の収集-公開-利用の方法に関する研究 生態系に関わる情報について、データベースの構築やシミュレーションを用いて効率的な収集・利用を行うための研究を実施しています。
3. 野生動物の行動・生態およびそれらの人間社会との関係に関する研究 動物の分布や行動について、害害や稀少動物と人間社会の共存などの観点から、カメラトラップやGPSを使って調査しています。
4. 画像解析・GIS・リモートセンシング等を用いた生物系情報の収集-解析法に関する研究 よりロバストな生態系の調査方法として、画像解析等を用いた手法の確立や適用を試みています。
5. 地域的な環境問題の解決に向けた超学際的なアプローチについての研究 地域の環境問題を解決するために必要な、文理融合的な研究の方法とステークホルダーとの対話のあり方についての研究を模索しています。

問合せ先
住所: 〒606-8501 京都市左京区吉田本町
京都大学情報科学研究科
社会情報学専攻 生物圈情報学講座
TEL: 075-753-3137
FAX: 075-753-3133
電子メール: breoffice@bre.soc.i.kyoto-u.ac.jp
研究室ホームページ: http://bre.soc.i.kyoto-u.ac.jp/
Description

Building a sustainable relationship between human society and nature

Our research interests cover various fields related to the study of terrestrial ecosystems, which consist of diverse organisms such as plants, animals, and microbes, as well as their abiotic environment. We study how these organisms interact with one another and with environmental factors, and how the human society modifies the environment and impacts the sustainability of environmental resource harvesting. We base our work on various methods such as field investigation, questionnaire surveys, remote-sensing, chemical/isotopic analyses, and computer simulations to collect and process information about these ecosystems or particular organisms.

Teaching Staff

Professor: OHTE Nobuhito (nобu@i.kyoto-u.ac.jp)
Associate Professor: KOYAMA Lina (linak@i.kyoto-u.ac.jp)
Assistant Professor: VINCENOT Christian (vincenot@i.kyoto-u.ac.jp)

Research Topics

1. Nutrient cycling in terrestrial ecosystems and its modelling
2. Design of database and simulations to gather ecological information and development of related methodologies
3. Behavior and ecology of wildlife and its interaction with the human society
4. Establishment of approaches to collect and analyze information on terrestrial ecosystems and their relationship with the human society using remote sensing, image analysis, GIS and other techniques.
5. Trans-disciplinary study for regional environmental issues based on co-design and co-production approaches by natural and social scientists and stakeholders.

Contact

Biosphere Informatics Division, Department of Social Informatics, Graduate School of Informatics, Kyoto University
Address: Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501
Telephone: 075-753-3137
Fax: 075-753-3133
E-mail: breoffice@bre.soc.i.kyoto-u.ac.jp
Laboratory website: http://bre.soc.i.kyoto-u.ac.jp/
地域・防災情報システム学講座 総合防災システム分野
教授 多々納 裕一　准教授 Subhajyoti SAMADDAR
http://imdr.dpri.kyoto-u.ac.jp/
志望区分: 社−10

安全で安心な社会形成のための防災システムの構築を目指して－

安全で安心な社会の形成を目指した総合的施策を合理的に策定・実施するためのマネジメントシステム構築の方法論に関する研究を実施しています。この際、人間の行動を中心に据えた社会・経済システムと災害過程との相互作用の解明、リスクコミュニケーションの促進のための方法論構築を通じて、災害に強い社会を実現するための防災システムを探求しています。

研究テーマ
1. 防災・減災施策の政策評価
災害を全くなくすことはできませんが、その影響を小さくし、迅速な回復を実現することは可能です。このために有効な災害リスク管理の方策や災害リスクガバナンスの仕組みを設計・評価していくための研究を進めています。例えば、気候変動リスクへの適応していくための減災施策の設計やその実現に向けたリスクガバナンスのあり方、少子・高齢化を考慮した総合的な津波防護方策のデザイン、インフラレジリエンスの向上方策などに取り組んでいます。

2. 自然災害の社会経済的影響
自然災害は、low-frequent high-impact eventであり、発生頻度は小さいけれども、発生した際の影響が甚大となるという特徴を有しています。ある地域で発生した災害は、直接被害を受けていない地域にも様々な形で波及します。災害によってライフラインが機能停止したり、物資供給が滞ったり、投資が減少し、人口の移動や経済構造の変化が生じることもある影響が発生します。理論的・実証的な手法を駆使し、災害の社会経済的影響の解明に取り組んでいます。

3. 災害リスクコミュニケーションを核とした社会的備えの構築
また、災害リスクの制御とファイナンシングなど、災害リスク管理の手段を効果的に社会に実装して行くためには、災害リスクコミュニケーションを核としたガバナンスの仕組みを構築することが重要です。このために、個人の動機付けや社会実装のメカニズムなど、パブリックインボルメンツや参加型防災計画などの基礎を与えるリスクコミュニケーションに関する研究を行っています。

ムンバイにおける住民主導型災害リスク軽減計画のためのワークショップの様子
Creating disaster management systems that build safe, secure societies

We design methodologies for enhancing the planning and management system for integrated disaster risk management for community resiliency. Our research interests encompass socio-economic dynamics of disaster risk development process, economic impacts of disaster, disaster risk governance and risk communication mechanisms through participatory process.

Research Topics

1. Policy design for building disaster resilient society
Natural calamities cannot be avoided, but we can build resilient society through reducing their consequences and accelerating the recovery. We investigate the effectiveness of innovative disaster preventive measures, and design the process mechanisms for implementable disaster risk governance. Some recent representative research projects are – the cost-benefit analysis of tsunami protection walls for climate change adaptation for Japanese communities facing depopulation, the design measures for creating infrastructure resilience.

2. Economic impact assessment of natural disasters
We conduct theoretically and empirical investigations to methodically understand the social economic impacts of ‘low-frequency, high-impact’ disasters. Although irregular they cause huge impacts with cascading effects across regions and sector. Such disaster can impact the areas that are not directly hit by disasters. The consequences of such disaster are having wider and snowballing impacts - disrupting lifelines, reducing economic investments, population migration and changes in economic structure.

3. Disaster-risk communications and community-based disaster risk reduction
Considering the implementation challenge of DRR strategies, we conduct research on risk communication methods and techniques to facilitate local communities’ participation in the disaster risk governance process.
地域・防災情報システム学講座 巨大災害情報システム分野

<table>
<thead>
<tr>
<th>教授</th>
<th>矢守 克也</th>
</tr>
</thead>
<tbody>
<tr>
<td>准教授</td>
<td>大西 正光</td>
</tr>
<tr>
<td>助教</td>
<td>中野 元太</td>
</tr>
</tbody>
</table>

志望区分：社－11

概要

－実践的研究を通じた総合減災システムの構築－

巨大災害による被害を軽減するためには、社会全体で災害リスクに関する情報・知識を共有し、コミュニケーションを通じて、災害にどう立ち向かうかを考えることが必要となります。本研究室では、現場での実践的研究を通じて、災害リスク情報に関するコミュニケーション、防災学習、行政や地域における危機対応、減災・復興ファイナンスなどのテーマを中心として、社会心理学及びゲーム理論等を用いたシステム分析に立脚して、総合減災システムの構築を目指します。

教員

- 教授 矢守克也 (yamori@drs.dpri.kyoto-u.ac.jp)
- 准教授 大西正光 (onishi.masamitsu.7e@kyoto-u.ac.jp)
- 助教 中野元太 (nakano.genta.8n@kyoto-u.ac.jp)

研究テーマ

1. リスク社会における実践的防災研究のあり方に関する理論的研究
2. 新しい防災教育手法の開発に関する研究
3. 持続可能な災害文化的構築に関する研究
4. ゲーミング・シミュレーション手法を活用した地域防災力の向上に関する研究
5. 防災情報と災害報道に関する研究
6. 被災地の復旧・復興支援に関する研究
7. 災害心理学に関する研究
8. 環太平洋沿岸域における津波防災対策に関する研究
9. シミュレーションによる巨大災害発生シナリオの解明に関する研究
10. 広域連携による巨大災害の減災戦略に関する研究
11. 行政による避難措置に係る意思決定論に関する研究
12. 災害レジリエンス向上のための減災・復興ファイナンスに関する研究

問合せ先

京都大学防災研究所巨大災害研究センター
〒611-0011 京都府宇治市五ヶ庄
電話（秘書室）：0774-38-4273
Fax（秘書室）：0774-31-8294
Description

Building integrated disaster risk reduction systems by the practical study approach

Society is required to prepare and take actions to reduce the potential damage of disasters by sharing information and knowledge concerning potential disaster risks through communication among the members of society. This laboratory aims at developing disaster risk reduction systems through practical studies from the perspective of social psychology and systems analysis. The research interests include disaster psychology, disaster risk information and communication, disaster education, regional crisis management and decision making support, financing for disaster recovery.

Teaching Staff

Professor YAMORI Katsuya (yamori@drs.dpri.kyoto-u.ac.jp)
Associate Professor ONISHI Masamitsu (onishi.masamitsu.7e@kyoto-u.ac.jp)
Assistant Professor NAKANO Genta (nakano.genta.8n@kyoto-u.ac.jp)

Research Topics

1. Theoretical studies on disaster management in “Risk societies”
2. Development of new disaster education techniques
3. Creation of sustainable disaster reduction cultures
4. Community disaster capacity building by using gaming approaches
5. Disaster information and reports on the press and TV/radio broadcast
6. Recovery and reconstruction process in disaster stricken area
7. Disaster psychology
8. Tsunami response programs in the Pan-Pacific region
9. Large-scale disaster scenarios studies through computer simulation
10. Large-scale disaster mitigation strategies using wide-area coordination
11. The methodology for supporting decision-makings of government bodies in emergency evacuation
12. Financial system for improving the resilience against massive natural disasters

Contact

Research Center for Disaster Reduction Systems, Disaster Prevention Research Institute, Kyoto University
Address: Gokasho, Uji, Kyoto 611-0011
Telephone (Secretarial Office): 0774-38-4273
Fax (Secretarial Office): 0774-31-8294
地域・防災情報システム学講座 危機管理情報システム分野

教授 畑山 満則 准教授 廣井 慧
http://dimsis.dpri.kyoto-u.ac.jp 志望区分：社－12

概要

－ITを用いた新しい防災・災害対応システム－
時空間情報を効率的に処理できる地理情報システムを核とし、総合防災システム、総合減災システムを確立するために求められる情報システムに関する基礎研究を行うとともに、行政・民間企業・地域防災を担うコミュニティ・災害支援ボランティア組織などを対象に、多種の自然災害における災害対応を想定した情報システムの構築法論と評価手法を構築することを目指しています。研究対象とする情報システムは、核となる地理空間情報の収集・管理・運用を内包しているものとし、情報収集へのICTやロボット技術の適用、災害対応過程で必要となる地理空間情報のモデル化、システム運用のための体制作りについても研究課題として取り扱っています。

研究テーマ
1. 地理情報システム：災害対応支援システムの基盤となる地理情報システムには、時間と空間の管理が求められます。時空間を扱うことができる地理空間情報のデータベース構造、高速データアクセス、データハンドリング技法を提案し、災害対応のためのアプリケーションを開発しています。
2. 災害対応システムデザイン：被災地における人材（使用者、作業者など）、インフラ（電源、通信など）、端末・デバイスの確保状況に合わせて柔軟に組み替えることができる災害対応システムの設計理論を提案し、実際の災害現場での利用による評価を行っています。
3. 防災計画・避難計画：マルチエージェントをはじめとするシミュレーション技術を用いて避難や救助などの災害時の行動をモデル化し、計画策定に利用できるシステムの開発を行っています。
4. ハザードマップ・リスクマップ：従来の静的なハザードマップでは伝わらないメッセージを伝えるため、動くハザードマップ、災害リスクマップを作成し、その効果を検討しています。
5. 防災データサイエンス：ビッグデータ解析などのデータサイエンスの技術を用いて、まだ、災害対応で用いられていなかった情報の取得方法を提案しています。

問合せ先
〒611－0011 京都府宇治市五ケ庄 防災研究所 大災害研究センター 災害情報システム研究領域
TEL：0774－38－4333（畑山）、0774－38－4272（センター事務室）
Email：m.hatayama@imdr.dpri.kyoto-u.ac.jp
Disaster Information Systems with Information Technology

After Great Hanshin-Awaji Earthquake in 1995, Rapid and remarkable advances have been made in Information Technology (IT). A number of advanced information systems were proposed, but most of them didn't work sufficiently as we expected under disasters. Our goal is to establish design methodologies for development of effective disaster management systems against various types of disaster for National/Local Government, local communities in affected areas and disaster relief organizations. One of the most important key technology is spatial temporal database to record, visualize and analyze current/near future status in affected areas. In addition our laboratory focuses on human behavior before/during/after disasters as targets to supply valuable services.

Research Topics

1. Geographic Information System:
2. Design for Disaster Response Support Systems:
To realize effective disaster response, database systems which can treat spatial and temporal information are needed. We conduct developments of temporal geographic information system and propose design methods for disaster response support systems.
3. Disaster Prevention Planning, Evacuation Planning:
4. Moving Hazard Map, Risk Map
5. Data Science for Disaster Countermeasure
To submit efficient information system considering human behavior for disaster prevention and mitigation, we have been developed several disaster management systems such as visualization of hazard and risk information, evaluation of regional disaster response plan and Tsunami evacuation plan using data science methodologies and advanced information technologies.
急速な情報化を経て、今や情報機器なしで臨床医療、医学教育、医学研究を行うことはほぼ不可能です。一方、臨床医療の基本的枠組みは情報革命以前と変わっておらず、臨床現場では制度と現実の歪み中での暗中模索が続いています。医療情報学講座では、実際の臨床現場を舞台に、情報基盤を創り、活きた臨床情報を解析し、実用的な情報支援を実現することで、情報化時代の新たな医療の姿を紡ぎ出すことを目指しています。この目標の下、情報と医療が接する全ての領域での研究を進めていきます。

研究テーマ
1. 医療情報システム開発：電子カルテ・遠隔医療システム・地域連携情報システム（EHR: Electronic Health Record）などを、Virtual/Augmented/Mixed Reality（VR/AR/MR）、Internet of Things（IoT）、Ubiquitous Computing、Wearable Computingなどの様々な情報通信技術を適用して開発し、臨床現場へ導入して評価します。
2. データヘルス研究：臨床現場から得られた生の情報を、診断・治療・病院経営・病院管理・医療政策立案などに活かすための、画像処理・言語処理・情報分析技術の開発と、分析結果の活用を行います。
3. 臨床活動の情報支援研究：最新の情報技術を用いて診断・治療・リハビリ・ヘルスプロモーション・医学教育・医学研究など様々な医療・介護・健康活動を支援するため、医療AI（人工知能）、機械学習による診断支援システム、ウェアラブル生体計測システム、VRシミュレータ/トレーナやリハビリ支援機器、ソーシャルゲーム環境などを開発し、臨床現場へ導入して評価します。

医療情報学講座
医療情報学分野（協力講座）
教授 黒田 知宏 准教授 岡本 和也 助教 平木 秀輔, Luciano Santos
http://www.kuhp.kyoto-u.ac.jp/~mi/

医療情報学講座
医療情報学分野
教 授 黒田 知宏
准教授 岡本 和也
助 教 平木 秀輔, Luciano Santos

http://www.kuhp.kyoto-u.ac.jp/~mi/

問合せ先 〒606-8507 京都市左京区聖護院川原町54 京都大学医学部附属病院 医療情報企画部
TEL:075-366-7701 FAX:075-366-7705 Email: medinfoq@kuhp.kyoto-u.ac.jp
Recent rapid advancement of information and communication technologies makes it impossible to perform clinical medicine, medical education, and medical research without computational support. However, basic design, from a social perspective, of clinical, medical, and health promotional activities remain as they were before the information revolution. The gap between design and reality results into major drawbacks. The medical informatics laboratory aims to design clinical medicine and healthcare systems suitable for the digital natives, living in the world after the information revolution. For that purpose, we tackle challenges at the border between medicine and informatics, through the practical information system development and the analysis of live clinical data, at real-world clinical fields.

Research Topics

1. **Information System Development**: To develop various information systems (Hospital Information System, Electronic Health Record, Telemedicine) using innovative information technologies (Virtual/Augmented/Mixed Reality, Internet of Things, Ubiquitous and Wearable Computing) and to introduce real clinical field.

2. **Data Health**: To develop information methods to process information (document, image, and data) to analyze live clinical data for clinical and political decision making, hospital management, and clinical education.

3. **Information Support for Clinical Activities**: To develop and to apply information systems (medical AI (artificial intelligence), diagnosis support system based on machine learning, wearable biometric system, AR clinical trainer, rehabilitation navigator, and health social games) to support clinical decision, rehabilitation, health promotion, clinical education, and epidemiological researches.

Our lab is in the university hospital, and students research in collaboration with clinical staffs.

The teaching team consists of three engineers (Kuroda, Okamoto and Santos) and one medical professional (Hiragi). Additionally, professors of Preemptive Medicine and Lifestyle-related Disease Research Center, Solution Center for Health Insurance Claims, and EHR Research unit, and MDs, Nurses, Radiologists, Officers and other clinical staffs share our physical space and perform research together.

Our lab is the only lab in informatics course to let students research under supervision of IT and Medical specialist at real clinical fields. Will you join us and tackle real clinical challenges?

Contact Division of medical IT and administration planning, Kyoto University Hospital.
Shogo-in Kawahara-cho 54, Kyoto, 606-8507 Japan.
TEL :+81-75-366-7701 FAX :+81-75-366-7705 Email: medinfoq@kuhp.kyoto-u.ac.jp
概要 ～エビデンスに基づく新しい教育・学習支援環境をめざして～
教育情報学は情報学と教育学との重要な接点です。従来、インターネットやモバイル端末等の情報技術を用いて「教育の情報化」が進められてきました。しかしながら、単にシステムを導入するだけでなく、その利用方法や効果をエビデンスとして蓄積し、有効活用することが求められています。教育情報学は、エビデンスベースの教育・学習環境を実現するための教育の情報化のあり方、人工知能やビッグデータ技術の応用、教育内容の体系化や教育方法・評価法に関して教育研究を行います。

教員
教授 緒方広明
特定講師 フラナガン・ブレンダン
講師 毛利考佑

研究テーマ
1. ブロックチェーンを用いた教育データ科学のための基盤情報システムの研究
2. 教育ビッグデータの超高速リアルタイム分析手法の研究
3. 教育・健康データを用いたマルチモーダル・ラーニング・アナリティクスの研究
4. デジタル教科書の閲覧ログを用いた学習行動の予測の研究
5. 教育ビッグデータを用いた知識・学習者モデルの構築と可視化の研究
6. プログラミング教育での学習ログの利活用の研究
7. シームレス・モバイル学習環境に関する研究
8. エビデンスに基づく教育のためのエビデンスの抽出及び共有手法に関する研究

問合せ先
所在地：〒606-8501 京都市左京区吉田二本松町
京都大学学術情報メディアセンター,
教育支援システム研究部門, 学術データアナリティクス研究分野
研究室：学術情報メディアセンター南館4階
TEL：075-753-9052 FAX：075-753-9053
電子メール：contact@let.media.kyoto-u.ac.jp
Learning and Educational Technologies Group, Learning and Educational Technologies Division (Collaborative Division)

Professor: OGATA Hiroaki; Lecturers: FLANAGAN Brendan Jon; MOURI Kousuke;
http://www.let.media.kyoto-u.ac.jp

Application Code: SI-14

Description

—Toward Evidence-based Education —

Learning and educational technologies provide an important nexus between informatics and education. In the past several information commutation technologies has been introduced into education such as LMS (learning management systems) and MOOCs (Massively Open Online Courses). However, it is necessary not only to introduce ICT to education but also to collect, share and utilize the evidences in the fields of learning and educational settings. For example, we investigate artificial intelligence to support education and learning, the application of big-data technology, the systematization of education content, and education methods and assessment techniques.

Teaching Staff

Professor OGATA Hiroaki
Lecturers FLANAGAN Brendan Jon; MOURI Kousuke

Research Topics

1. Development of Information platform for educational data science by using block-chain
2. Real-time data analysis of educational big data
3. Multimodal learning analytics by using both learning and health data
4. Behavior prediction by using e-book log data
5. Visualization of knowledge and learner model by using educational big data
6. Learning and teaching analytics in programming language education
7. Design and development of seamless learning environment
8. Evidence extraction and sharing methods for evidence-based education

Contact

Academic Data Analytics Laboratory, Department of Educational Support, Academic Center for Computing and Media Studies, Kyoto University
Address: Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
Laboratory: 4F, South Bldg., Academic Center for Computing and Media Studies
Telephone: 075-753-9052 Fax: 075-753-9053
E-mail: contact@let.media.kyoto-u.ac.jp